
Background Information for GS2

I. NONLINEAR GYROKINETIC SIMULATIONS

A. Model equations and numerical techniques

GS2 is based on the electromagnetic nonlinear gyrokinetic equation [1–5]. This equation describes the evolution of
fluctuations which satisfy
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where h̃ is the nonadiabatic part of the perturbed distribution function, F0 is the equilibrium distribution function, φ̃
and Ã‖ are the perturbed parts of the electrostatic and parallel vector potential, B̃‖ is the perturbed parallel magnetic
field, B is the equilibrium magnetic field, L is an equilibrium scale length (of density, temperature, or magnetic field),
and Ω = eB/(mc) and ρ = vt/Ω are the cyclotron frequency and thermal gyroradius of a given particle species with
thermal velocity v2

t
= T/m and charge e. The simulations are performed in field-line-following coordinates using

toroidal flux tubes [6–8]. In such coordinates, the nonlinear gyrokinetic equation may be written as
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Here, the distribution function F0 = F0(ε, Ψ) depends only on the energy ε = mv2/2 and the flux surface label
Ψ, where Ψ is the equilibrium poloidal magnetic flux enclosed by the magnetic surface of interest. The total time
derivative is given by dt = ∂t + (c/B) [χ̃, ·] , where [·, ·] is the Poisson bracket. The perpendicular curvature and ∇B

drifts are given by ωd = k⊥ ·B×
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Here, γ = k⊥v⊥/Ω and ωT
∗ = n0c ∂ΨF0, where n0 is the toroidal mode number of the perturbation. The self-consistent

electromagnetic field fluctuations are computed from the gyrokinetic Poisson-Ampère equations,
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The Bessel functions J0 and J1 arise because Eqs. (4-6) are formulated in particle space x, rather than in gyrocenter

space R. We retain the Debye-shielding term ∇2

⊥φ̃ in Poisson’s equation, since the electron Debye length λDe can
be comparable to ρe in laboratory fusion experiments. Of course, this term can be neglected when only ion-scale
instabilities are studied.
GS2 is a nonlinear generalization of a widely used gyrokinetic stability code [9]. An operator splitting scheme is used,

so that the linear terms [including Eqs. (4–6)] may be treated implicitly [9]. The nonlinear terms are evaluated with
a dealiased pseudospectral algorithm in the plane perpendicular to the field line. A second-order Adams-Bashforth
scheme is used to advance the nonlinear terms in time. Non-uniform coordinate meshes are used in velocity space
to improve the resolution, particularly for the trapped-passing boundary. A small amount of upwind diffusion is
typically used, only in the direction along the field line. In the absence of upwind diffusion, the algorithm is second-
order accurate in space and time. Good parallel performance is achieved by employing multiple-domain decomposition
in four of the five dimensions at all times.
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